Using Graphs of Functions to Understand the Remainder Theorem

Example 1:

1. Use long division or synthetic division to determine if x + 3, x + 1, x - 1, and x - 2 are factors of $f(x) = x^2 + x - 1$.

	Is a factor	Is not a factor	Remainder
<i>x</i> + 3			
<i>x</i> + 1			
x-1			
x-2			

2. Complete the chart of function values by plugging the x-values into the function $f(x) = x^2 + x - 1$.

Х	f(x)
-3	
-1	
1	
2	

Example 2:

1. Use long division or synthetic division to determine if x + 3, x + 2, x + 1, and x - 2 are factors of $f(x) = x^3 + 2x^2 - 4x + 3$.

	Is a factor	Is not a factor	Remainder
<i>x</i> + 3			
<i>x</i> + 2			
<i>x</i> + 1			
x-2			

2. Complete the chart of function values by plugging the x-values into the function $f(x) = x^3 + 2x^2 - 4x + 3$.

х	f(x)
-3	
-2	
-1	
2	

For each of these examples, what do the function values and the remainders have in common?