Name \qquad Date \qquad Period \qquad

Rational Numbers Test

Part 1: Choose three questions from each section and solve according to the directions. Each question is worth 2 points. Show your work and simplify your final answers.

Section 1: Multiply. Convert decimals to fractions before multiplying.

1. $\frac{2}{11} \times 0.75$ \qquad
2. $\frac{10}{21} \times-\frac{7}{8}$ \qquad
3. $-1.8 \times-\frac{5}{6}$ \qquad
4. $4 \frac{1}{2} \times-1 \frac{1}{3}$ \qquad

Section 2: Divide. Convert decimals to fractions before multiplying.
5. $\frac{2}{3} \div 0.75$ \qquad
6. $\frac{5}{6} \div 1 \frac{1}{9}$ \qquad
7. $8 \div\left(-\frac{1}{8}\right)$ \qquad
8. $\frac{7}{12} \div \frac{3}{8}$

Section 3: Add or subtract.
9. $\frac{5}{11}+\frac{6}{11}$
10. $\frac{5}{18}-\frac{13}{18}$
11. $2 \frac{3}{5}+7 \frac{3}{5}$
12. $-\frac{4}{35}-\left(-\frac{17}{35}\right)$

Section 4: Add or subtract.
13. $-\frac{3}{4}+\frac{7}{8}$
14. $-\frac{2}{3}+4 \frac{3}{4}$
15. $-\frac{2}{9}-\left(-\frac{2}{3}\right)$
16. $1 \frac{1}{3}-2 \frac{5}{6}$
T
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section 5: Convert fractions to decimals, and order from least to greatest.
17. $\frac{4}{9}, 0.4,0.44, \frac{3}{5}$
18. $0.25,0.2,0.02,0.251, \frac{253}{1000}$
\qquad
19. $0 . \overline{3}, 0.3,0.3 \overline{4}, 0.33$
20. $7.75,7 \frac{2}{3}, 6 \frac{5}{6}, 6.8$

Part 2: Choose four questions from each section and solve according to the directions. Each question is worth 2 points. Show your work and simplify your final answers.

Section 6: Solve each equation.
21. $6 x=-4.2$
22. $r+0.4=1.4$
\qquad
23. $z-4 \frac{5}{8}=15 \frac{3}{8}$
\qquad
\qquad
24. $-10=\frac{b}{-7}$ \qquad
25. $\frac{1}{2} h=-14$ \qquad

Section 7: Evaluate each expression.
26. 6^{2} \qquad
27. 5^{-2} \qquad
28. $6^{2} \cdot 5^{2}$ \qquad
29. $2 \cdot 3^{2} \cdot 4^{2}$ \qquad
30. $\left(\frac{2}{5}\right)^{3}$

Section 8: Write each number in standard form.
31. 2×10^{4}
32. 2.51×10^{-2}
33. 6×10^{-1}
34. $\quad 6.79 \times 10^{5}$
35. 9.61×10^{2}

Section 9: Write each number in scientific notation.
36. 7,650
37. 51,000
38. 0.0002
39. 0.231
40. 892

Section 10: Write each expression using exponents.
41. $4 \cdot 4 \cdot 4 \cdot 4$
42. $3 \cdot 2 \cdot 5 \cdot 5 \cdot 5 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$
43. $\frac{3}{4} \cdot \frac{3}{4}$
44. $b \cdot b \cdot b \cdot b \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c$
45. $3 \cdot 2 \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot \frac{5}{6}$

Name \qquad Date \qquad Period \qquad

Rational Numbers Test - Partner Work

Part 3: Solve four of the word problems below. Each is worth 3 points. Write your final answer in a complete sentence.
46. Crystal is making $1 \frac{1}{2}$ times a recipe. The original recipe calls for $3 \frac{1}{2}$ cups of milk. How many cups of milk does she need?
\qquad
\qquad
47. Marcus wishes to space letters equally across the top of a page. If each letter is 1.7 inches wide, and the paper is $8 \frac{1}{2}$ inches wide, what is the maximum number of letters that he can fit across the top of the page?
\qquad
\qquad
48. Jeremy worked $5 \frac{3}{20}$ hours on Monday. On Tuesday, he worked $2 \frac{13}{20}$ hours. How much longer did Jeremy work on Monday than he worked on Tuesday?
49. A pizza has 3 toppings with no toppings overlapping. Pepperoni tops $\frac{1}{3}$ of the pizza and mushrooms top $\frac{2}{5}$. The rest is topped with sausage. What fraction is topped with sausage?
\qquad
\qquad
50. Trevor is $\frac{3}{8}$ of Maria's age. Trevor is 15 . Write and solve a multiplication equation to find Maria's age.
\qquad
\qquad

Part 4: Answer three of the essay questions below in complete sentences. Each is worth 6 points.
51. Give 6 examples of rational numbers in the real world.
\qquad
\qquad
\qquad
\qquad
52. Explain the difference between like and unlike fractions. How do you change them? Why do you need to turn unlike fractions to like fractions?
\qquad
\qquad
\qquad
\qquad
53. What is another name for a multiplicative inverse? How do you find a number's multiplicative inverse? When do you need to find a multiplicative inverse?
\qquad
\qquad
\qquad
\qquad
54. Why are some numbers expressed using scientific notation? Name 2 things typically expressed in scientific notation.
\qquad
\qquad
\qquad
\qquad

